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LETTER TO THE EDITOR

Common algebraic structure for the Calogero—Sutherland
models
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Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku 3-8-1, Tokyo
153, Japan

Received 4 September 1996, in final form 4 November 1996

Abstract. We investigate a common algebraic structure for the rational and trigonometric
Calogero—Sutherland models by using the exchange-operator formalism. We show that the set
of Jack polynomials whose arguments are Dunkl-type operators provides an orthogonal basis
for the rational case.

One-dimensional quantum integrable models with long-range interaction have attracted
much interest, not only because of their physical significance, but also due to their beautiful
mathematical structure. One such model is the Sutherland (trigonometric) model, which
describes interacting particles on a circle [1]. The total momentum and Hamiltonian of the
model are given by, respectively,
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whereg is a real constant. Excited states for the Sutherland model are written in terms of
the Jack symmetric polynomials.

Another example of long-range interaction is the Calogero (rational) model of interacting
harmonic oscillators [2]:
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Excited states for this model are of the fornx) = gz)(x)lﬁéc)(x), where ¢(x) is some

symmetric polynomial and/xé‘”(x) is the ground-state wavefunction (see equation (17)

below). The polynomial pamg(x) can be obtained in principle [1, 2]; however, properties

of orthogonal bases have not been clarified as much as in the case of the Sutherland model.
Due to the integrability of the Calogero model, the operaifgrbelongs to a family

of commuting differential operatoregnserved quantities physical terminology). Ujino

and Wadati explicitly constructed polynomials that diagonalize the first two of them [3].

They further obtained an operator representation for the eigenfunctions and showed that

they diagonalize the first two conserved quantities [4]. Polychronakos studied some special

cases of the wavefunctions [5] by using the exchange-operator formalism [6, 7].
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Orthogonal polynomials associated with the Calogero model were investigated recently
by Baker and Forrester [8]. Their proof of orthogonality is based on the orthogonality of
another set of polynomials, which they cgkneralized Jacobi polynomial3hey obtained
the orthogonality of the Calogero case via some limiting procedure. In this letter, using
the exchange-operator formalism [6, 7], we shall show that the algebraic structure of the
Calogero model coincides exactly with that of the Sutherland model. As a consequence,
we present a new type of operator representation of a basis that diagonalizes all of the
conserved quantities simultaneously, and proves the orthogonality without taking a limiting
procedure.

We start by reviewing the method of calculating the excited states for the Sutherland
model [1]. Let us rewrite the operators (1) in terms of the variabjes exp(if;); then

P=Y5  m i( ) ETEE) Pt i 3)
= X — =
s pi J 3xj S = = (xj xk)Z
The ground-state wavefunction for the model is
(S)(x) l_[ |xj _xk|ﬁ 1_[ j —B(N— l)/2 (4)

Jj<k

To obtain the excited states, it is convenient to make a gauge transformation on the
momentum and Hamiltonian:

N
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A basis of joint eigenspace fafs and Hs are known as the Jack polynomials [9, 10]. The
Jack polynomials/, (x), indexed by the partitiona = (A1, ..., Ay) of length< N, are
uniquely determined by the following properties:

(I) Ji(x) =m; + ZM(<)~) ukumul
(i) J,.(x) are eigenfunctions offs,

wherem; are the monomial symmetric functions, and< A is defined by the dominance
ordering [9]. Instead of the second property, we may impose the orthogonality with respect
to the scalar product,

N
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where the integration contour is the unit circle in the complex plane.

Integrability of the Sutherland model, i.e. existence of a family of commuting operators
that includes the Sutherland Hamiltonian, can be proved by using the exchange-operator
formalism [6]. We first introduce so-callddunkl operatorg[11]:
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wheres;; are elements of the symmetric grosg. An elements;; acts on functions of
X1, ..., Xy as an operator which permutes argumentandyx;. These operators satisfy the
following properties:

[Di, Dj] = [xi,x;] =0

§ijXj = XiSij Sij Xk = XkSij (k 5& i, J)
sijDj = Disij 8ijDx = Dysij (k#1i,J) 9)
[D;, x;] = &;; <1+ B Zsik) — (1 —6;j)Bsij .

k(i)

We denote the algebra generated by the elemgnt®; ands;; as.As. We then introduce
an As-module s (Fock spacggenerated by the vacuum vecidjs = 1. The elementD;
of As annihilate the vacuum vector, ang preserve|0)s:

D;|0)s =0 5i;10)s = |0)s. (10)
Further we defin&Cherednik operatorsﬁj [12, 13]:
Dj ZXij +ﬂ Z Sjk

k(<J)

_x,a —,BZ =D - ﬂZ
Xj

k(<J) k(>1)

L= D+BG-D. (11)

Since the operatoer commute with each other, they are diagonalized simultaneously by a
suitable choice of the bases &t [13, 14]. We introducenon-symmetric Jack polynomials
J*(x) with w € Sy, characterized by the following properties [13, 14]:

(I) jk(x) = X + Z(p, w')<(A,w) Cl};)llLv 5) ’

(i) J*(x) are joint eigenfunctions for the 0peratdr3§,

where we have used the notatief) = xﬁf(l) .- ~xi,”(’N). The ordering(u, w') < (A, w) is
defined as follows:

(i) wm<a,
(n,w) < w (i) if w = A then the first non-vanishing (12)
differencew(j) — w'(j) is positive

For the elementvg of Sy such thatwe(j) =N —j+1(j =1,..., N), eigenvalues of)j
are given by

D; T (x) = {An_js1+ B — D} T (x). (13)

For other elementsy € Sy, eigenvalues ofbj are all obtained by permutating the
components of the multipleftiy_ ;41 + B(j — 1)};‘:1

Using ﬁ, we introduce the generating function of commuting operators [13]:
N
Asw) =] [+ D)). (14)
j=1

If we expandAg(u) as a polynomial in, the coefficients’® form a set of commuting
operators. The transformed momentum (5) and Hamiltonian (6) of the Sutherland model
are related ta®;

Resi;” = Po+ IBN(N — 1)

[9V2 _ 5f©) _ B L LA B (15)
Res((1;”)? — 2I,°) = Hs+ B(N — 1) Ps + ¢B°N(N —1(2N - 1)
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where ReX means that the action of is restricted to symmetric functions of the variables
X1y .., XN-

SinceDs(u) is symmetric inﬁj, symmetric eigenfunctions are obtained by symmetrizing
JX(x), i.e. the Jack polynomialg, (x) are the eigenfunctions. Eigenvalues[&ﬁ(u) are
given by

=z

As@) . (x) = [ {u+ Av-jsr+ BG = D} L(x). (16)
j=1
Since all the eigenvalues dfs(u) are distinct and the operataf)s(u) is self-adjoint with
respect to the scalar product (7), the Jack polynomiais) form an orthogonal basis with
respect to the scalar product (7).
We then proceed to the Calogero model. The ground state for the Calogero Hamiltonian
2)is

N x2
o) =]Thy —xul’ ] exp(—é) (17)
j=1

j<k
As in the case of the Sutherland model, the Calogero Hamiltonian is also related to the
Dunkl operatorsD; [6, 7]. We perform a kind of gauge transformation Hg:

I:IC= l_[|xj —)ck|7‘3 oHCol_[|xj —xklﬂ

j<k j<k
1 ( 92 2) B 1 < 3 d )
_oy (-2 L) F - } 18
2 = 8sz / 2 ; xj —x \0x;  dxk (18)
We then define an analogue of creation and annihilation operators,
t 1 1
Aj = 72(—D.i + %) Aj= 72(01‘ + ;). (19)

We denote byA; an algebra generated by, A; ands;;. Since the commutation relations
of these operators are the same as thosg ahd D;, we can introduce an isomorphism of
As to A as follows:

px))=Al  p(D) = 4. (20)
We note that this kind of isomorphism has already been used in [4]. Here we extend it
to the isomorphism of Fock spaces. The Fock spacedplis constructed in the same
way asAg; Fock spaceF. is defined asF, = (C[A*, e A;,]|O)C where the vacuum vector
0)e = [T\, exp(—x2/2) is annihilated byA[, i.e. A]|0)c = 0. We denote also by the
isomorphism ofFs to F. such that

p(10)s) = [0)c plalv)) = p(a)p(|v)) (21)
fora e Asand|v) € Fs.

Since the operatorB; commute with each other, we can construct commuting operators

h; acting onF; as

hi=p(D) =AJA;+B ) sik. (22)

k(<))

The generating function of commuting operators that inclédés constructed by usin@j:

N
Acu) = p(Asw) = [T+ Ay . (23)
j=1
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We then defind® as coefficients ofA(u):
~ N . A
Ac(u) = Z uNf/Ij(C) . (24)
=0

The transformed Calogero Hamiltonid, is obtained asf, = Resfl(c) + N/2. Our aim

i§ diagonalization ofA¢(«) on .. Since the Jack polynomials, (x) (¢ Fs) diagonalize
As(u), we conclude that the vectors,

p (Jy(x)0)) = J1(AH)]0)c € F¢ (25)
diagonalizeAc(u). The eigenvalues of\.(x) are the same as those Af(x) and all of

them are distinct.
We then introduce another scalar product,

((f.8)) = c(0lf (A1 ..., An)g(AL ..., A})IO)c
=s(0[f(D1, ..., Dn)g(x1, ..., xn)|0)s
for f andg homogeneous polynomials of thg same degree. The ope&}tsnhe adjoint of
A; with respect to this scalar product. Hensg is self-adjoint for (26). It follows that the
Jack polynomials are pairwise orthogonal relative to the scalar product (26). We note that
the second expression of (26) is equivalent to the pairing introduced in [8] (equation (6.4)
of [8]).

It is well known that the Jack polynomials are pairwise orthogonal for two kinds of
scalar products; one is (7) and the other is a combinatorial one [9]. The scalar product
(26) is the third example. Recently, Polychronakos calculated the norms of the elementary
symmetric polynomials with respect to this scalar product [5]. The norms for the general
Jack polynomials with respect to (26) were evaluated by Baker and Forrester [8]. In our
notation, their result is written as
(oo )y = 8plicr= - =xy =1 [] i —j+1+B0%;—0) (27)

(i, j)er
with A" = (A}, A5, ...) the conjugate partition ta. (We remark that the normalization of
the Jack polynomials used in [8, 10] is in a different form from ours.) On the other hand,
Stanley obtained the following formula ([10], theorem 5.4):

j—L1+B(N—i+1D)

(26)

Slxp=-=xy=01 = . — : (28)
e i —J PO =i+ 1)
Combining these results, we finally come to the expression
i —=1+BWN —i+D}r —j+1+ B0 -0}
(oo ) =8 [ ! : (29)

e A= j+BOS—i+D)

In conclusion, we have proved that the algebraic structure for the Calogero model
coincides exactly with that of the Sutherland model by using the exchange-operator
formalism. We have further proved that the vectors (25%; form an orthogonal basis for
the Calogero model. We hope that our results provide a useful tool for gaining a deeper
understanding of the Calogero model.

The author acknowledges Dr Yusuke Kato for directing his attention to the Calogero—
Sutherland models and for fruitful discussions. He also acknowledges Professors Junkichi
Satsuma and Tetsuji Tokihiro for their critical reading of the manuscript and helpful
comments. Thanks are also due to Professors Katsuhisa Mimachi and Masatoshi Noumi for
information on some important references.
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Note added in proof After submission of this letter, a paper [15] was brought to the author’s attention. In
[15], Ujino and Wadati proved that the vectors (25) diagonalize the first two conserved quantities. However, they
have not proved the orthogonality. We remark that the Rodrigues-type formula of [4, 15] is a consequence of the
formula in [16] and the isomorphism (21) of the Fock spaces as is suggested in [4]. The author acknowledges
Dr Hideaki Ujino for informing us of his results and for helpful comments.
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