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LETTER TO THE EDITOR

Common algebraic structure for the Calogero–Sutherland
models

S Kakei†
Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku 3-8-1, Tokyo
153, Japan

Received 4 September 1996, in final form 4 November 1996

Abstract. We investigate a common algebraic structure for the rational and trigonometric
Calogero–Sutherland models by using the exchange-operator formalism. We show that the set
of Jack polynomials whose arguments are Dunkl-type operators provides an orthogonal basis
for the rational case.

One-dimensional quantum integrable models with long-range interaction have attracted
much interest, not only because of their physical significance, but also due to their beautiful
mathematical structure. One such model is the Sutherland (trigonometric) model, which
describes interacting particles on a circle [1]. The total momentum and Hamiltonian of the
model are given by, respectively,

Ps =
N∑
j=1

1

i

∂

∂θj
Hs = −

N∑
j=1

∂2

∂θ2
j

+ 1

2

∑
j<k

β(β − 1)

sin2[(θj − θk)/2]
(1)

whereβ is a real constant. Excited states for the Sutherland model are written in terms of
the Jack symmetric polynomials.

Another example of long-range interaction is the Calogero (rational) model of interacting
harmonic oscillators [2]:

Hc = 1

2

N∑
j=1

(
− ∂2

∂x2
j

+ x2
j

)
+

∑
j<k

β(β − 1)

(xj − xk)2
. (2)

Excited states for this model are of the formψ(x) = ϕ(x)ψ
(c)
0 (x), whereϕ(x) is some

symmetric polynomial andψ(c)
0 (x) is the ground-state wavefunction (see equation (17)

below). The polynomial partϕ(x) can be obtained in principle [1, 2]; however, properties
of orthogonal bases have not been clarified as much as in the case of the Sutherland model.

Due to the integrability of the Calogero model, the operatorHc belongs to a family
of commuting differential operators (conserved quantitiesin physical terminology). Ujino
and Wadati explicitly constructed polynomials that diagonalize the first two of them [3].
They further obtained an operator representation for the eigenfunctions and showed that
they diagonalize the first two conserved quantities [4]. Polychronakos studied some special
cases of the wavefunctions [5] by using the exchange-operator formalism [6, 7].
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Orthogonal polynomials associated with the Calogero model were investigated recently
by Baker and Forrester [8]. Their proof of orthogonality is based on the orthogonality of
another set of polynomials, which they callgeneralized Jacobi polynomials. They obtained
the orthogonality of the Calogero case via some limiting procedure. In this letter, using
the exchange-operator formalism [6, 7], we shall show that the algebraic structure of the
Calogero model coincides exactly with that of the Sutherland model. As a consequence,
we present a new type of operator representation of a basis that diagonalizes all of the
conserved quantities simultaneously, and proves the orthogonality without taking a limiting
procedure.

We start by reviewing the method of calculating the excited states for the Sutherland
model [1]. Let us rewrite the operators (1) in terms of the variablesxj = exp(iθj ); then

Ps =
N∑
j=1

xj
∂

∂xj
Hs =

N∑
j=1

(
xj
∂

∂xj

)2

− β(β − 1)
∑
j<k

2xjxk
(xj − xk)2

. (3)

The ground-state wavefunction for the model is

ψ
(s)
0 (x) =

∏
j<k

|xj − xk|β
N∏
j=1

x
−β(N−1)/2
j . (4)

To obtain the excited states, it is convenient to make a gauge transformation on the
momentum and Hamiltonian:

P̃s = (ψ
(s)
0 )−1 ◦ Ps ◦ ψ(s)

0 =
N∑
j=1

xj
∂

∂xj
(5)

H̃s = (ψ
(s)
0 )−1 ◦Hs ◦ ψ(s)

0 − 1
12β

2N(N2 − 1)

=
N∑
j=1

(
xj
∂

∂xj

)2

+ β
∑
j<k

xj + xk

xj − xk

(
xj
∂

∂xj
− xk

∂

∂xk

)
. (6)

A basis of joint eigenspace for̃Ps andH̃s are known as the Jack polynomials [9, 10]. The
Jack polynomialsJλ(x), indexed by the partitionsλ = (λ1, . . . , λN) of length 6 N , are
uniquely determined by the following properties:

(i) Jλ(x) = mλ + ∑
µ(<λ) uλµmµ,

(ii) Jλ(x) are eigenfunctions of̃Hs,

wheremλ are the monomial symmetric functions, andµ < λ is defined by the dominance
ordering [9]. Instead of the second property, we may impose the orthogonality with respect
to the scalar product,

(f, g)s =
∮
f (x−1)g(x)ψ

(s)
0 (x−1)ψ

(s)
0 (x)

N∏
j=1

dxj
2π ixj

(7)

where the integration contour is the unit circle in the complex plane.
Integrability of the Sutherland model, i.e. existence of a family of commuting operators

that includes the Sutherland Hamiltonian, can be proved by using the exchange-operator
formalism [6]. We first introduce so-calledDunkl operators[11]:

Dj = ∂

∂xj
− β

∑
k(6=j)

1

xj − xk
(sjk − 1) (j = 1, . . . , N) (8)
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where sij are elements of the symmetric groupSN . An elementsij acts on functions of
x1, . . . , xN as an operator which permutes argumentsxi andxj . These operators satisfy the
following properties:

[Di,Dj ] = [xi, xj ] = 0

sij xj = xisij sij xk = xksij (k 6= i, j)

sijDj = Disij sijDk = Dksij (k 6= i, j)

[Di, xj ] = δij

(
1 + β

∑
k(6=i)

sik

)
− (1 − δij )βsij .

(9)

We denote the algebra generated by the elementsxj , Dj and sij asAs. We then introduce
an As-moduleFs (Fock space) generated by the vacuum vector|0〉s = 1. The elementsDj
of As annihilate the vacuum vector, andsij preserve|0〉s:

Dj |0〉s = 0 sij |0〉s = |0〉s . (10)

Further we defineCherednik operatorsD̂j [12, 13]:

D̂j = xjDj + β
∑
k(<j)

sjk

= xj
∂

∂xj
− β

∑
k(<j)

xk

xj − xk
(sjk − 1)− β

∑
k(>j)

xj

xj − xk
(sjk − 1)+ β(j − 1) . (11)

Since the operatorŝDj commute with each other, they are diagonalized simultaneously by a
suitable choice of the bases ofFs [13, 14]. We introducenon-symmetric Jack polynomials
J λ
w(x) with w ∈ SN , characterized by the following properties [13, 14]:

(i) J λ
w(x) = xλw + ∑

(µ,w′)<(λ,w) C
λµ

ww′x
µ

w′ ,

(ii) J λ
w(x) are joint eigenfunctions for the operatorsD̂j ,

where we have used the notationxλw = x
λ1
w(1) · · · xλNw(N). The ordering(µ,w′) < (λ,w) is

defined as follows:

(µ,w′) < (λ,w) ⇐⇒
 (i) µ < λ,

(ii) if µ = λ then the first non-vanishing
differencew(j)− w′(j) is positive.

(12)

For the elementw0 of SN such thatw0(j) = N − j + 1 (j = 1, . . . , N), eigenvalues ofD̂j
are given by

D̂jJ λ
w0
(x) = {

λN−j+1 + β(j − 1)
} J λ

w0
(x) . (13)

For other elementsw ∈ SN , eigenvalues ofD̂j are all obtained by permutating the
components of the multiplet

{
λN−j+1 + β(j − 1)

}
j=1,...,N .

Using D̂j , we introduce the generating function of commuting operators [13]:

1̂s(u) =
N∏
j=1

(u+ D̂j ) . (14)

If we expand1̂s(u) as a polynomial inu, the coefficientsÎ (s)j form a set of commuting
operators. The transformed momentum (5) and Hamiltonian (6) of the Sutherland model
are related toÎ (s)j ;

ResÎ (s)1 = P̃s + 1
2βN(N − 1)

Res
(
(Î
(s)
1 )2 − 2Î (s)2

) = H̃s + β(N − 1)P̃s + 1
6β

2N(N − 1)(2N − 1)
(15)
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where ResX means that the action ofX is restricted to symmetric functions of the variables
x1, . . . , xN .

SinceD̂s(u) is symmetric inD̂j , symmetric eigenfunctions are obtained by symmetrizing
J λ
w(x), i.e. the Jack polynomialsJλ(x) are the eigenfunctions. Eigenvalues of1̂s(u) are

given by

1̂s(u)Jλ(x) =
N∏
j=1

{
u+ λN−j+1 + β(j − 1)

}
Jλ(x) . (16)

Since all the eigenvalues of̂1s(u) are distinct and the operator̂Ds(u) is self-adjoint with
respect to the scalar product (7), the Jack polynomialsJλ(x) form an orthogonal basis with
respect to the scalar product (7).

We then proceed to the Calogero model. The ground state for the Calogero Hamiltonian
(2) is

ψ
(c)
0 (x) =

∏
j<k

|xj − xk|β
N∏
j=1

exp

(
−x

2
j

2

)
. (17)

As in the case of the Sutherland model, the Calogero Hamiltonian is also related to the
Dunkl operatorsDj [6, 7]. We perform a kind of gauge transformation onHc:

H̃c =
∏
j<k

|xj − xk|−β ◦Hc ◦
∏
j<k

|xj − xk|β

= 1

2

N∑
j=1

(
− ∂2

∂x2
j

+ x2
j

)
− β

2

∑
j 6=k

1

xj − xk

(
∂

∂xj
− ∂

∂xk

)
. (18)

We then define an analogue of creation and annihilation operators,

A
†
j = 1√

2
(−Dj + xj ) Aj = 1√

2
(Dj + xj ) . (19)

We denote byAc an algebra generated byAj ,A
†
j andsij . Since the commutation relations

of these operators are the same as those ofxj andDj , we can introduce an isomorphism of
As to Ac as follows:

ρ(xj ) = A
†
j ρ(Dj ) = Aj . (20)

We note that this kind of isomorphism has already been used in [4]. Here we extend it
to the isomorphism of Fock spaces. The Fock space forAc is constructed in the same
way asAs; Fock spaceFc is defined asFc = C[A†

1, . . . , A
†
N ]|0〉c where the vacuum vector

|0〉c = ∏N
j=1 exp(−x2

j /2) is annihilated byA†
j , i.e. A†

j |0〉c = 0. We denote also byρ the
isomorphism ofFs to Fc such that

ρ(|0〉s) = |0〉c ρ(a|v〉) = ρ(a)ρ(|v〉) (21)

for a ∈ As and |v〉 ∈ Fs.
Since the operatorŝDj commute with each other, we can construct commuting operators

ĥj acting onFc as

ĥj = ρ(D̂j ) = A
†
jAj + β

∑
k(<j)

sjk . (22)

The generating function of commuting operators that includeH̃c is constructed by usinĝhj :

1̂c(u) = ρ
(
1̂s(u)

) =
N∏
j=1

(u+ ĥj ) . (23)
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We then defineÎ (c)j as coefficients of̂1c(u):

1̂c(u) =
N∑
j=0

uN−j Î (c)j . (24)

The transformed Calogero HamiltoniañHc is obtained asH̃c = ResÎ (c)1 + N/2. Our aim
is diagonalization of1̂c(u) on Fc. Since the Jack polynomialsJλ(x) (∈ Fs) diagonalize
1̂s(u), we conclude that the vectors,

ρ (Jλ(x)|0〉s) = Jλ(A
†)|0〉c ∈ Fc (25)

diagonalize1̂c(u). The eigenvalues of̂1c(u) are the same as those of1̂s(u) and all of
them are distinct.

We then introduce another scalar product,

〈〈f, g〉〉 = c〈0|f (A1, . . . , AN)g(A
†
1, . . . , A

†
N)|0〉c

= s〈0|f (D1, . . . , DN)g(x1, . . . , xN)|0〉s
(26)

for f andg homogeneous polynomials of the same degree. The operatorA
†
j is the adjoint of

Aj with respect to this scalar product. Hence1̂c is self-adjoint for (26). It follows that the
Jack polynomials are pairwise orthogonal relative to the scalar product (26). We note that
the second expression of (26) is equivalent to the pairing introduced in [8] (equation (6.4)
of [8]).

It is well known that the Jack polynomials are pairwise orthogonal for two kinds of
scalar products; one is (7) and the other is a combinatorial one [9]. The scalar product
(26) is the third example. Recently, Polychronakos calculated the norms of the elementary
symmetric polynomials with respect to this scalar product [5]. The norms for the general
Jack polynomials with respect to (26) were evaluated by Baker and Forrester [8]. In our
notation, their result is written as

〈〈Jλ, Jµ〉〉 = δλµJλ(x1 = · · · = xN = 1)
∏
(i,j)∈λ

{λi − j + 1 + β(λ′
j − i)} (27)

with λ′ = (λ′
1, λ

′
2, . . .) the conjugate partition toλ. (We remark that the normalization of

the Jack polynomials used in [8, 10] is in a different form from ours.) On the other hand,
Stanley obtained the following formula ([10], theorem 5.4):

Jλ(x1 = · · · = xN = 1) =
∏
(i,j)∈λ

j − 1 + β(N − i + 1)

λi − j + β(λ′
j − i + 1)

. (28)

Combining these results, we finally come to the expression

〈〈Jλ, Jµ〉〉 = δλµ
∏
(i,j)∈λ

{j − 1 + β(N − i + 1)}{λi − j + 1 + β(λ′
j − i)}

λi − j + β(λ′
j − i + 1)

. (29)

In conclusion, we have proved that the algebraic structure for the Calogero model
coincides exactly with that of the Sutherland model by using the exchange-operator
formalism. We have further proved that the vectors (25)∈ Fc form an orthogonal basis for
the Calogero model. We hope that our results provide a useful tool for gaining a deeper
understanding of the Calogero model.

The author acknowledges Dr Yusuke Kato for directing his attention to the Calogero–
Sutherland models and for fruitful discussions. He also acknowledges Professors Junkichi
Satsuma and Tetsuji Tokihiro for their critical reading of the manuscript and helpful
comments. Thanks are also due to Professors Katsuhisa Mimachi and Masatoshi Noumi for
information on some important references.
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Note added in proof. After submission of this letter, a paper [15] was brought to the author’s attention. In
[15], Ujino and Wadati proved that the vectors (25) diagonalize the first two conserved quantities. However, they
have not proved the orthogonality. We remark that the Rodrigues-type formula of [4, 15] is a consequence of the
formula in [16] and the isomorphism (21) of the Fock spaces as is suggested in [4]. The author acknowledges
Dr Hideaki Ujino for informing us of his results and for helpful comments.
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